
84 IMAGES OF PHYSICALLY IRREDUCIBLE REPRESENTATIONS 

HATCH, D. M., STOKES, H. T., KIM, J. S. & FELIX, J. W. (1986). 
Phys. Rev. B, 33, 6196. 

KIM, J. S., HATCH, D. M. & STOKES, H. T. (1986). Phys. Rev. B, 
33, 1774. 

LANDAU, L. D. & LIFSHITZ, E. M. (1980). Statistical Physics, 3rd 
ed., Part 1. New York: Pergamon. 

MILLER, S. C. & LOVE, W. F. (1967). Tables of Irreducible Rep- 
resentations of Space Groups and Co-Representations of Magnetic 
Space Groups. Boulder: Pruett. 

MOZRZYMAS, J. & SOLECKI, A. (1975). Rep. Math. Phys. 7, 
363-394. 

STOKES, H. T. & HATCH, D. M. (1984). Phys. Rev. B, 30, 4962- 
4967. 

STOKES, H. T. & HATCH, D. M. (1985). Phys. Rev. B, 31, 7462- 
7464. 

TOLI~DANO, J. C., MICHEL, L., TOLI~DANO, P. & BREZIN, E. 
(1985). Phys. Rev. B, 31, 7171-7196. 

TOLI~DANO, J. C. & TOLI~DANO, P. (1980). Phys. Rev. B, 21, 
1139-1172. 

Acta Cryst. (1987). A43, 84-92 

Estimation of Quartet Phase Sums from a New Joint Probability Distribution of 
Normalized Structure Factors 

BY RENE PESCHAR AND HENK SCHENK 

Laboratory of  Crystallography, University of  Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, 
The Netherlands 

(Received 14 January 1986; accepted 20 June 1986) 

Abstract 

A new joint probability distribution of normalized 
structure factors is derived for equal-atom structures 
in space group P1. From this general distribution, a 
series expansion, the conditional joint probability 
distribution of the quartet phase sum is obtained, 
when restrictive conditions among the reciprocal vec- 
tors are imposed. The main difference from existing 
quartet distributions is the possibility of enclosing 
higher-order terms to any given order of N, although 
an approximation employed in the derivation limits 
the number of them considerably. The higher-order 
terms present are easily employed in the series since 
the determination of their explicit appearance has 
been automated: a computer program derives the 
terms up to a desired order and stores them in a coded 
form. In general, the incorporation of selective terms 
up to order N -3 appears to yield sufficient conver- 
gence. Only high ILl values or a low N value may 
necessitate the use of higher-order terms. Test results 
show that, in contrast to results from the quartet 
distributions of Hauptman and Giacovazzo, system- 
atic estimation errors are hardly present, while 
absolute estimation errors are reduced as well. 

1. Introduction 

Results of Simerska (1956) and Hauptman & Karle 
(1953) indicated that the four-phase structure 
invariant ~4, 

04 = ~n, + ~.2 + ~H3 - ~H, + H2+ H3. (1) 

also called the quartet phase sum or simply quartet. 

0108-7673/87/010084-09501.50 

lies more probably near zero for larger values of 

E4=IEn, En~En~Eo,+.~.H3IN -~ (2) 

However, in general the triplet relationship 

~3 = ~OH I -~- (~"2 -- (~HI+ H2 (3) 

will be estimated more reliably because the E 3 values, 
which determine the reliability of the triplet estima- 
tion, are in general larger than the E4 values since 
they depend on N -1/2 only. Therefore, quartets were 
not used as such for practical purposes. This changed 
when Schenk (1973a) pointed out that quartets can 
also be formed by summing two triplets with one 
phase in common and he showed in this way that 
quartet (1) depends not only on IE.,I, If.2l. IE.3l and 
IE,~,+..÷.~I but also on the so-called cross terms 
IEH,+-2I, IE-,+-3I and IE..+.31. He argued that the 
larger the E 4 and cross-term magnitudes the more 
probably I~/4 lies near zero. Another important result 
of the introduction of this cross-term principle was 
that quartets with small cross-term magnitudes could 
be predicted to lie near 7r (Schenk & De Jong, 1973; 
Schenk, 1973a, b; Hauptman, 1974; Schenk, 1974). 
This renewed interest in quartets and the cross-term 
principle led to the development of improved joint 
probability distributions (j.p.d.'s) for estimating the 
quartet phase sum (Hauptman, 1975a, b, 1976; 
Giacovazzo, 1976a, b) and initiated the development 
of the neighbourhood principle (Hauptman, 1975b) 
and the representation theory (Giacovazzo, 1977). 
The latter theories identify structure factors upon 
which the phase sum of a structure (sem)invariant 
most sensitively depends. 
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In practice the application of quartets in direct 
methods has proved to be successful, in particular in 
starting-set procedures and figures of merit (Schenk, 
1973a; Schenk & De Jong, 1973; Schenk, 1974; De 
Titta, Edmonds, Langs & Hauptman, 1975; van der 
Putten & Schenk, 1979; Gilmore, 1977; Freer & 
Gilmore, 1980). In non-centrosymmetric structure 
determination, the mode as obtained from the Haupt- 
man (1975b) distribution [see also (I.5) and (1.9) in 
Appendix I]* is employed for the estimation of Ig,,I, 
although this seems to have some drawbacks, van der 
Putten & Schenk (1979) found that the mode tends 
to overestimate quartets to be either zero or 7r. In the 
procedure they adopted, modes predicted to be zero 
or 7r were set away from these values. This appeared 
to work better than the use of the predicted zero and 
7r values and also better than the use of the probabilis- 
tic means <lg,41> as calculated from the Hauptman 
distribution. 

From comparing I g, al's as calculated from the 
atomic coordinates with estimated ones (some test 
results can be found in this paper), it appears that 
the use of both the Hauptman expression and the 
exponential quartet expression of Giacovazzo 
[(1976a); see also (I.10) and (I.11) in Appendix I] 
results in systematic differences between calculated 
and estimated [qJai'S. This applies to the use of both 
the mode and the probabilistic mean for the estima- 
tion of [~4[. This might of course hamper solving the 
crystal structure with quartets. 

Both the exponential quartet distributions men- 
tioned are approximations. In the course of their 
derivation only those terms of order N -1 have been 
included which are dependent on the random vari- 
ables for the phases, with the result that these 
expressions are correct up to order N -~/2 only. An 
improvement of the estimates might therefore be 
gained by including first these missing higher-order 
terms of order N -~ in the exponential expressions 
and, secondly, terms of higher order than N -~. 
However, this procedure is not straightforward, so 
another approach has been adopted. 

Recently it has been shown that the inclusion of 
higher-order terms in a new series-expansion form of 
a joint probability distribution of the three normalized 
structure factors (n.s.f.'s) whose phases form a triplet 
invariant qJ3 can reduce systematic differences when 
estimating [qJ3['s (Peschar & Schenk, 1986). In the 
present paper the method of deriving this new j.p.d. 
of three n.s.f.'s will be generalized in order to obtain 
a j.p.d, of an arbitrary number of structure factors. 
The derivation will be performed for the case of 

* Appendix I has been deposited with the British Library Docu- 
ment Supply Centre as Supplementary Publication No. 8UP 43430 
(.2pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH1 2HU, England. 

equal-atom structures in space group P1. Then, in 
the next step, the j.p.d, of the seven n.s.f.'s EH,, EH2, 
En3, EH,+Hz+H 3, EH,+H2, EH,+H3 and EHz+H 3 and in 
particular the joint probability distribution of 04, 
given the seven magnitudes, are obtained from the 
general expression. Finally, on the basis of test results 
it is shown that the new conditional j.p.d, of ~4, a 
series expansion, compares favourably with the quar- 
tet distributions of Hauptman and Giacovazzo. 

2. The joint probability distribution 
of the normalized structure factors 

E ~ ,  EH~, . . . , EM~ , W >_ 3 

For structures consisting of N identical atoms in the 
space group P1, the normalized structure factor is 
given by 

N 
E o  =lEH[ exp  (iq~H)= N -1/2 ~, exp (27riH.rj). 

j = l  

(4) 
Suppose that W reciprocal vectors H 1 , . . . ,  Hw are 
fixed, while subject to some restrictive relations 
among them; these relations need not be specified 
yet. The atomic position vectors rj are assumed to be 
independent primitive random variables (p.r.v.'s). 
Hence, the n.s.f.'s, being functions of rj, can be con- 
sidered to be continuous random variables them- 
selves. Denote by RH and ~H the continuous random 
variables for the magnitude [E HI and the phase ~0n 
of an n.s.f. EH respectively. 

By analogy with Hauptman (1975a), the-j.p.d, of 
the absolute values and phases of the W n.s.f.'s, is 
written as a 2 W-fold integral: 

P =  P (  ~ I ,  . . . , ~ w ,  RI ,  . . . , R w )  
oo 2"rr 

- (2w)EW P l . . . P w  

pl,...,pw=O Ot,...,Ow=O 

xexp - i  ~ p~R,, cos (O~,-rI)~) 
v=l  

X C ( O I , . . .  , Ow, P l , . . . ,  Pw) 

× d01  . . .  dOw d p l  . . .  dpw, (5) 
with the characteristic function (c.f.) being 

N 

C - " C ( O 1 , . . . , O W ,  P l , . . . , P w ) - -  II  cj (6 )  
j = l  

and 

0 = exp i N  -1/2 ~ p~, cos (2~Hv.  r j -  0~, 
g= 1 rj" 

(7) 

However, in contrast to the method of Hauptman 
(e.g. 1975), the average in (7) is taken over all possible 
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positions of the atomic position vector rj. Expression with 
(7) can be evaluated by applying (I.1) of Appendix 
I and taking the average over the rj. Assuming the 
independence of those variables as well as uniform 
distributions, the integrations yield zero unless 

w 

n q H i  = 0 ( 8 )  
i=1  

in which n U, . . . ,  nwj are integers. From this it can be 
concluded that only those numerical ( n ~ j , . . . ,  nwj) 
combinations contribute to the c.f., and hence to the 
j.p.d., for which 

w 
n0~ is a structure invariant. (9) 

i = l  

Next, denote by 

E with nj = ( n l j , . . . ,  nw~) (10) 
nj 

a summation over all ( n ~ j , . . . ,  nwj) combinations 
which are in accordance with (8). Thus, (7) can be 
rewritten and 

w 
• n j  cj=~., 1-I ( t )~J , ,~ j (N-~ /2pv )exp ( - iOvn , , j )  (11) 

n j  v = l  

and the c.f. (6) consequently as an N-fold product 
of these summations: 

N W 

C = ~. I t  [I ( i ) " "J , , . k (N- t /2p . )  
n l , . . . , n  N k = l  v = l  

x exp (- iO~m~) (12) 

with 
N 

m, ,= Y'. n,,k for v =  1 , . . . ,  W. (13) 
k = l  

Since there are no restrictions on the integer m~ 
values, (12) can be reordered such that a summation 
over the rn~ values is performed first while the sub- 
sequent summations over ( n , , . . . ,  aN) combinations 
have to be carded out under the condition (13): 

with 

ml,...,mw=--oo ~ = 1  

N W 

x E I-[ I-[ J . . , ( N - ' / = P . )  (14) 
nl, . . . ,n N k = l  v = l  

n , , l + . . . + n , , N = m ~ ,  for v = l , . . . ,  W. 

From (5) and (4) and after performing all 0 integra- 
tions using (1.2) of Appendix I, the expression for 
the j.p.d, is obtained as 

P = ( R ,  . . . R w ) /  (2rr) w 

x ~ exp ( -  im.q~.  
ml,...,mw=--eo 1 

X hm, ..... mw(R1, . . . , R w )  (15) 

hmt ...... w(Rl,..., Rw ) 

= E l-I P,,J,,,~(o,,R~) 
n l , . . . , l i  N P ~ I  

x 1-I L ~ k ( g - ' / 2 p ~ ) d p ~ ,  (16) 
k = l  

under condition (13). 
At this point it appears to be helpful to introduce 

different summation variables [see Peschar & Schenk 
(1986) for a similar procedure] in order to arrive at 
a reordered expression. Suppose that in a certain 
(n~, . . . .  nN) combination the number of different n 
sets is k Denote these k different sets q,,  A • [1, k] 
and q, = ( n ~ , , . . . ,  nw~,). Denote further by I. the 
frequency of the q, set in the ( n l , . . . ,  nN) combina- 
tion. So 

k 

~ I, = N (17) 
A = I  

k 

~, l~n~ = m~. (18) 
A = I  

As a consequence, the summations in (16) are 
changed into summations over (i) the total number 
of different qA sets; (ii) the numerical values of the 
q~ = ( n l ~ , . . . ,  nw~) sets, under conditions (18); and 
(iii) the frequency l~ of the q~ sets, under condition 
(17). For a certain ( q , . . . ,  qk, l~,- . - ,  lk) choice, the 
total frequency COmqd in the (n~, . . . ,  aN) combina- 
tion is 

COmqd = N! 1-I l~! (19) 
A = I  

Hence, (16) can be written as 

hm, ...... w ( R l , . . . ,  R w )  

= 2 E E COmq,, l-I pJm~(p,,R, ,)  
A = I  ql,---,qa ll,...,la v = l  

x II [ L ~ . ( N - ' 2 o ~ ) ]  " do~ • (20) 
A = I  

Since the n~,, values in the product 

k 

~ [ J ~ , ( g - ' / 2 p ~ ) ]  t. (21) 
A = I  

are not necessarily all different, other variables will 
facilitate the calculation of (20). 

Suppose that in (21), for a fixed v value, s different 
n~ values are found. Denote these values r~,, t • [1, s] 
and s - k. Further, denote the frequency of r~, among 
the n~a values by a~.,. Thus, 

r~,a~, = m~. (22) 
t = l  
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Hence, by introducing the new variables, (21) can be 
changed into 

f i  [Jr,,,(N-1/2pv)]a",. (23) 
t = l  

The procedure to perform the integrations in (20), 
combined with (23), has already been dealt with 
extensively for similar expressions elsewhere 
(Peschar & Schenk, 1986). So it suffices here to indi- 
cate that the approximation expressions (I.3) and 
(I.4) of Appendix I have been used. 

The final expression obtained for the j.p.d, of the 
phases and the absolute values of t.he W n.s.f.'s can 
now be written: 

P ( t P l ,  • • • , CI)w, Rl,..., Rw) 
W 

= zr-w I-I R, exp [ - R  21 
i=1 

ml,...,mW j = l  

X g m  I ...... w(Rb...,Rw) ( 2 4 )  

with 

gin, ..... m w ( R l , . . . ,  Rw) 
k 

= E E E COmq,l 
X = l  qb---,qx Ii ..... Ix 

w lexp[R~I-D~2)]_.P,~*(R~D-~I) 1 
× l - I  . . . .  = -  - - -  . ( 2 5 )  

~=1 [N(~v+"~)/2D~+~'~+2I I ( I r ~ , l t ) = ~ , J  
t = l  

The variables /z~, /x*, D~ and P~.~,.. are defined by 

(26) 

= N -1 E + 1) (27) 
t = l  

P~'~'*~(D~) : ~ ( - 1 ) % l ( ~ )  ( ~ * )  (DR:) ~+j';-2~ 

~-=o (28) 

fo r /~  ---/~* and P~,~,~: = P . . ~ .  Note that the way in 
which (25) is expressed follows as closely as possible 
the way in which Naya, Nitta & Oda (1965) express 
their formulae. 

3. Conditional j.p.d, of the quartet phase sum ~/t4 given 
the seven magnitudes IEHJ, IEHJ, [EH3I, IEH,+H2+n3I, 

IEn,+ml, IEn,+n3l and IEm+ml 

From (24), the j.p.d, of the phases and magnitudes 
of the seven n.s.f.'s End, EH2, En,+H2+m, En~+n~, 

End+n3 and En2+n3 can be obtained by taking W = 7 
and specifying four restrictive conditions among the 
reciprocal vectors: 

H a  = - H 1  - H2 - H3;  H5 = H1 + H2; 
(29) 

H6 -- HI  + H 3 ;  H7 -" H E +  Ha.  

Assume further the extra condition that H~, H2 and 
8 3  a re  linearly independent. The conditional j.p.d. 
of gr4 given the seven magnitudes can be obtained 
from the j.p.d, of the phases and magnitudes by 
integrating with respect to the random variables 
~ ) 1 , ' ' ' ,  (~)7 under the condition 

~/'4 = (/)1 -~ (J)2 "~ (J~3 "~- (~)4 ( 3 0 )  

in which a/'4 is the random variable for the quartet 
phase sum. Only those (m~, . . . ,  m7) combinations in 
(24) (with W = 7) yield non-zero contributions to the 
conditional distribution which satisfy the conditions 

ml = mE = m3 ---- m4-- M, M integer (31a) 

and 

m5 = m 6 =  m 7 = 0 .  (31b) 

The function gm, ..... mT(R1,...,R7) will therefore be 
abbreviated to gM(RI,..., R7). This results in the 
following expression for the conditional j.p.d, of ~4 
given the seven magnitudes: 

P ( q Z 4 I R .  • • • ,  R7) 
oo 

= L-1 E exp (-iMg'4)gM(R1,..., g7) (32) 
M=--oo  

with L -~= a normalization constant. 
It should be noted that because (I.3) of Appendix 

I has been used, (32) does not contain all possible 
terms up to a certain order but, owing to the approxi- 
mation, only a selective number of them, which is 
nevertheless vast, as can be judged from Table 1. 

4. The evaluation of expression (32) 

The calculation of (32) seems to be impracticable 
because of the infinite summation. However, for prac- 
tical applications, (32) should contain only those 
terms which control its shape, and therefore it is 
necessary to have an indicator for the relative import- 
ance of the individual terms. The N dependence 
serves this purpose because it can be shown that for 
terms of increasing order of N their contribution to 
the sum decreases. 

From (25) with W = 7  it follows that the order 
depends on the frequency COmq.l (19) and on 

7 
]-I N(1/2)(~+~*).  (33) 

~'=1 

Although (19) and (33) cannot be expressed in the 
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Table 1. Cumulative number of different q= 
( n l , . . . ,  n7) combinations and the cumulative number 
of  terms in equation (32) with M >-0 up to order N -4 

Order:  N -s, s varies f rom 0 to 4. 

Cumula t ive  n u m b e r  
Cumula t ive  n u m b e r  of  te rms in 

s o f  q equat ion  (32) with M->  0 

0"0 1 1 
0-5 13 1 
1.0 27 11 
1.5 55 11 
2.0 77 103 
2.5 145 103 
3.0 207 1010 
3.5 319 1010 
4-0 483 9133 

same variables, for a given (q~,. . . ,qA, l~ , . . . , l a )  
combination in (25), the order is calculated easily. 
Then the derivation of (32) resolves itself into the 
determination of explicit expressions for all 
gM(R1,..., R7). This involves the following steps: 

(a) The selection of the allowed q combinations 
in accordance with (8) and (29). 

(b) The selection of (q~ , . . . ,  qA, l~ , . . . ,  IA) combi- 
nations under the restrictive conditions (17), (18) and 
(31). 

(c) For each selected (q~, . . . ,  la) combination, the 
calculation and coded storage of the variables and 
constants of (25)-(27) without using numerical values 
for N or the [El's. 

Although this procedure can be carried out by 
hand, it is rather cumbersome and time consuming 
to do so. Instead, a computer program has been 
written in Fortran V in which the steps are performed, 
resulting in the j.p.d. (32) in the form of a number 
of coded terms written on an internal computer 
device. Thus, the whole procedure to arrive at the 
explicit form of the joint probability distribution 
amounts to a computer-aided derivation. In Table 1, 
the number of terms arising from the development of 
(32) is listed up to order N -4. The second column 
shows the cumulative number of different q=  
( n b . . . ,  n7) combinations, calculated according to 
(8) and (32). The third column lists the cumulative 
number of allowed (q~, . . . ,  qA, l~ , . . . ,  la) combina- 
tions in accordance with (17), (18) and (31), although 
it should be noted that, in view of g_M(R~, . . . ,  R7) = 
gM(R1, . . . ,  R7), only those terms with M>_0 need 
to be considered. The computer time needed to gener- 
ate the terms listed in Table 1 varies from 1.5 to 16 
central-processor seconds on a Cyber 750, depending 
on the inclusion of terms up to and including order 
N -3 or order N -4. The number of terms listed in 
Table 1, comprising the conditional j.p.d. (32), form 
the basis of subsequent calculations, e.g. the calcula- 
tion of expectation values of ~4. In view of the 
foregoing, these calculations are reduced to simple 

summations employing the stored information as well 
as numerical values for N and I El's. Therefore, the 
computer time needed to calculate these expectation 
values is almost the same as the time needed when 
using the Hauptman distribution [(I.5)-(I.9) of 
Appendix I] and only about five times as much as 
the time needed for the Giacovazzo distrib'ution 
[(I.10)-(I.11)]. 

5. Convergence of expression (32) 

The convergence properties of (32) have been investi- 
gated by calculating expectation values and variances 
of[ ~41 for several combinations of N and I EHI values, 
while the order up to which the higher-order terms 
are included in (32) has been varied as well. Hence, 
the changes in the estimated laP'4[ values inform us 
about the achieved convergence. Some representative 
test results are shown in Table 2. For comparison the 
calculations have also been done with the expressions 
of Hauptman (I.5)-(I.9) and Giacovazzo (I.10)- 
(I.11). From this table it can be seen that for most 
quartets a reasonable convergence is achieved by 
including terms up to order N -4 or even N -3. 
However, for quartets with a large E4 value in combi- 
nation with either all large cross magnitudes [Ensl, 
I EHol and I E.71 or small ones, the estimates, and, more 
particularly, the variances may not be sufficiently 
reliable. For these quartets the inclusion of still 
higher-order terms seems to be advisable, but at pres- 
ent this has not been investigated further. If the data 
obtained with (32) are compared with those of the 
Hauptman and Giacovazzo distributions, it appears 
that for almost all quartets, except those predicted to 
be clearly negative, the expectation values (J ~4J) from 
(32) lie in between those obtained from the Hauptman 
and Giacovazzo distributions. The same observation 
has been made for quartets of which only two cross- 
term magnitudes were available, although for brevity 
these results are not given in tabulated form. 

6. Results and discussion 

Remarks concerning the testing procedures 

In order to investigate the quality of the phase sum 
estimates obtained from (32) for several equal-atom 
structures, in artificial as well as realistic models, an 
overall comparison between actual and estimated 
I gt4['s has been made. From the atomic coordinates, 
EH values were calculated. After that, in the group 
of strongest reflections, the quartet relations were 
generated while employing a lower limit for E4. 

For the estimation of 1~41 two options have been 
tested: (i) the probabilistic expectation value, the 
mean of lgr4l, denoted by ([~4l); and (ii) the mode 
of the distribution, i.e. the most probable value of 
[ I/-'¢41 , denoted by [~4lmode. 
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For the overall comparison of true and estimated 
I  41's, two cumulative averages have been calculated: 

AV 1 = (11/Faltrue - - ]  lt¢4]est) (34) 

and 

AV2 = (I I ~ 1 , ~ o - I  ~Fnle~tl). (35) 

AV2 is the mean absolute difference between the 
actual and the estimated I V'al's. The other average, 
AV1, is the overall systematic error of the estimated 
I ~F4l's with respect to the true [~4l's. For the cumula- 
tive presentation, the quartets should be ranked 
according to a weight which indicates the reliability 
of the estimation. For this ranking two weights have 
been employed: (i) the quartet product E4, and (ii) 
the inverse variance of the estimated I Vql. The vari- 
ance associated with the mean (I ~41) is given by 

0-=(I ~,1) = 41 ~/,41=>- (41 ~/ql>) = , (36) 

while the variance for 1~41mod~ is defined by 

0-2(1 ~4lmod~) = ~o ([ ~4lmod~-~,) 2 d~4.  (37) 

Apart from cumulative distributions, non-cumulative 
distributions have been calculated as well. For com- 
parison of these distributions the averages 

M 1 = (11/f4ltrue- I ~41~,) (38) 

and 

M 2  = (11 ~ 4 1 ~ o -  I ~F4Io~tl) (39) 

have been calculated. These averages include quartets 
with 1~41 estimated in a certain I~1 range only. 
Hence, M1 is an indicator for the systematic errors 
of the IV'a1 estimates which lie in a certain I V'~l range. 
Likewise, M2 indicates the absolute errors for the 
estimates in the I~ql range. 

Expression (32) has been tested for four structures: 
three randomly generated structures in space group 
P1 with code names P1A25, P1A50 and P1A100, 
consisting of 25, 50 and 100 equal atoms respectively, 
and a 30-atom realistic model structure with 
codename KANTER [the structure of Kanters & van 
Veen (1973) changed to an equal-atom structure]. 
The calculations have been performed for quartets 
with at least two cross-term magnitudes present. In 
these calculations (32) included terms up to order 
N -3 since for structure P1A25 preliminary results 
with (32), including the terms of order N -4, showed 
no notable improvement of the overall estimates. 
Occasionally, some variances were estimated to be 
negative. These quartets were included, but for prac- 
tical reasons the negative values were reset to positive 
ones. The discussion of the test results will concen- 
trate on the data for P1A25, since the conclusions to 
be drawn from these data are applicable to the other 
structures tested as well. Therefore, only the results 
for P1A25 are listed completely in Table 3. In Table 

Table 2. Some expectation values and variances of  l gt41 
as obtained from (32), while (32) includes terms up to 

order N -smax 

$max varies f r o m  1 to 4. For  c o m p a r i s o n  the values  as ob t a ined  
f rom the quar te t  express ions  o f  H a u p t m a n  (1.5) and  G i a c o v a z z o  

(I.10) are listed as well. 

N = 2 5  IE~,I=IE~I=IEmI =IE~,+M~+mI= 2.0 

A B C D E F G H I J 

IEH,÷H21 2.0 2"0 2"0 1"5 1"5 1"5 1"0 1"0 1"0 0"5 
IE,+,,I 2.0 2.0 1.5 1.5 1.5 l-0 1"0 1.0 0"5 0.5 
]EH2+n3 2"0 1.5 1"5 1"5 1"0 1.0 1.0 0"5 0.5 0"5 

Smax 1 2 3 4 H a u p t m a n  G i a c o v a z z o  

a <1~,~1>* 95 89 54 42 89 36 
(l~41)t -19  32 -10  -19 28 5 

B <1 ~41> 97 90 62 56 99 40 
o-2(] g"4]) -17 32 0 -1  34 6 

c (l~al> 99 92 71 71 111 45 
tr2([~4l) -13 33 11 14 42 8 

D <l'e,l> 102 96 83 85 129 54 
~2(1~,41) - 6  34 22 24 55 11 

E <l'e,l> 107 103 103 106 155 64 
tr2([ ~4[) 2 40 39 39 71 16 

F <1~:1> 115 123 134 135 194 83 
tr ([~4D 6 55 58 58 97 30 

o <1 ~,41> 136 176 183 182 247 140 
(IV',l) 40 83 80 80 115 81 

n <1V',l> 185 320 258 255 300 218 
o~(I ~,1) 104 17 91 97 109 126 

l <1 v'41> ~ 399 311 312 346 312 
~(1~'~1) ~ -61 113 109 86 115 
<IV'41> - 8  218 365 382 381 377 
~2(1~1) -288 176 87 53 61 66 

* (I ~,41) in me (=rad x 1000/2Ir), rounded off. 
t ~ (I~4D in rad2x 1000/27r, rounded off. 
~t: out of range. 

6 a summary is given of the most important results 
for all four structures, from which the representativity 
can be judged. 

Ranking criterion for the estimation: E 4 v e r s u s  inverse 
variance 

In Table 3 results of (32) for the structure P1A25 
are listed. In the upper section of this table, the data 
are ranked according to 0 --2 , the inverse variance of 
the estimates, while in the middle section the E4 value 
is the ranking criterion. The results for P1A25 
obtained with the Hauptman and Giacovazzo distri- 
butions, ordered in the same way, can be found in 
Tables 4 and 5 respectively. Comparison of the data 
ranked according to 0 - - 2  and E4 leads to the con- 
clusion that, irrespective of the type of estimation, 
mode or mean, or the number of cross-term magni- 
tudes present, for all three distributions ordering 
according to 0--2 is superior in view of the lower 
overall systematic and absolute estimation errors 
(AV1 and AV2 respectively). This confirms clearly 
the importance of including information on the cross 
terms. Therefore, only the ranking according to the 
inverse variance will be considered further for the 
cumulative averages. 
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Table 3. Comparison of true and estimated [~41's 

Estimates f rom the new quartet  distribution, equat ion (32) for P1A25. Quartets calculated from the 150 strongest reflections. E4 >-0.5. 
11/'41 estimated with ([ g'41) and I ~41modo. Ranking of  quartets according to inverse variance o--2(I ~41), E4 and estimated 11/'41. Cumulat ive  

averages AV1 and AV2 and the averages for the estimates in the 1~41 ranges, M 1 

Three cross magnitudes known 

and M2,  all in millicycles (mc). 

Two cross magni tudes  known 

(I ~41) I ~41mode (1~41) 1*41mode 
o--2 C N ~  AV1 AV2 C N g ' 4  AV1 AV2 CNg"4 AV1 AV2 C N ~ 4  AV1 AV2 

81 6 42 100 65 73 84 3 43 75 71 76 
262 2 46 210 70 80 269 -3  47 201 82 82 
331 -3  49 315 66 87 385 -6  47 329 79 81 
470 0 56 503 61 91 652 -2  53 542 83 88 
584 -1 59 652 70 97 933 -2  58 1054 76 100 
655 0 63 825 78 104 1511 -3  68 1530 86 108 
825 2 71 2075 -5  78 2075 89 120 

E 4 C N  if'4 AV1 AV2 CN gt 4 AV1 AV2 C N  1//" 4 AV1 AV2 C N  gr 4 AV1 AV2 

90 22 65 90 92 102 50 -14 56 50 70 90 
265 6 67 265 79 101 203 -10 66 203 76 96 
825 2 71 825 78 104 665 -3  75 665 87 112 

2075 -5  78 2075 89 120 

1~41 range Ngr4t  M1 M2 Ngr4 M1 M 2  Ngt4 M1 M2 Na/'  4 M1 M 2  

0-100 265 -2  46 624 102 104 413 -3  47 1675 118 119 
100-200 432 - 4  78 91 42 103 1277 -6  79 152 41 107 
200-300 89 -7  109 53 5 120 328 - 4  112 111 4 119 
300-400 39 16 81 35 -41 91 57 16 96 51 -79 131 
400-500 0 - -  - -  22 -107 111 0 - -  - -  86 -166 171 

* CN g'4 = Number of.quartets included in cumulative averages. 
t N gr 4 = number of quartets with 1'/41 estimated in indicated interval. 

Table 4. Comparison of true and estimated l aFnl's 

Estimates f rom the H a u p t m a n  distribution, equat ions (1.5)-(I.9) o f  Appendix  I for P1A25. Ranking of  quartets according to tr -2, /54 
and estimated I ~41- Cumulat ive  means AV1 and AV2 and the means for the I gr41 ranges, M 1 the absolute mean and M2 the systematic 

Three cross magnitudes known 

<1~41> 1~41mode 
o --2 CN~tt 4 AV1 AV2 C N ~ 4  AV1 

81 -40 53 86 10 
253 -44 59 317 -7  
329 -43 63 538 16 
484 -44 69 825 30 
825 -46 83 

E 4 C N  ~4 AV1 AV2 C N  ag 4 AV1 

90 -34 68 90 32 
265 -46 80 265 28 
825 -46 83 825 30 

mean,  all in mc. 

1~41 range Ngr4 M1 M 2  N ~ 4  M1 

0-100 15 -25 41 511 92 
100-200 528 -50 74 112 -11 
200-300 214 -48 107 86 -45 
300-400 68 -15 94 46 -107 
400-500 0 - -  - -  70 -171 

Two cross magni tudes  known 

(I ~41) I ~41mode 
AV2 CN ~4 AV1 AV2 C N  g"4 AV1 AV2 

83 67 -23 53 72 77 77 
89 371 -32 57 406 30 89 
89 694 -33 64 873 51 96 

103 1463 -36 78 1691 74 113 
2075 -37 87 2075 69 124 

AV2 CN 1/' 4 AV1 AV2 C N  ~4 AV1 AV2 

91 50 -54 75 50 62 96 
97 203 -47 79 203 61 101 

103 665 -39 85 665 70 114 
2075 -37 87 2075 69 124 

M2  NI/z4 M1 M2 N1/¢4 M1 M 2  

93 33 -37 52 1610 117 117 
92 1347 -37 77 100 21 102 

101 621 -43 110 113 -53 115 
132 74 8 102 79 -86 133 
171 0 - -  - -  173 -197 199 

Comparison of the use of the mean and the mode of 
expression (32) for estimating I al 

From the upper left three columns in Table 3 it can 
be seen that for the 825 quartets with three measured 
cross-term magnitudes, the use of the mean, <l~e41>, 
for estimating 1~41 results in a systematic estimation 
error of only 2 millicycles (mc) and an absolute 
overall estimation error of 71 mc. In contrast, employ- 
ment of the mode, I 1/-f4lmode , of (32) leads for the same 

quartets to a systematic error of +78 mc which means 
that the estimates are on the average 78 mc too low 
and, moreover, the absolute error is also higher: 
104 mc. 

This remarkable difference between the use of the 
mean and the mode can be elucidated further. In the 
lowest section of Table 3 the quartets have been 
ranked according to their estimated I V',l value. For 
five 1~41 estimated ranges the overall systematic and 
absolute differences with respect to the true I~,1 
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Table 5. Comparison of true and estimated 1 41's 
Estimates from the Giacovazzo distribution, equations (I.10)-(I.11) of Appendix I PIA25. Ranking of  quartets according to tr -2, E 4 

- 2  
(7 

and estimated 1~4[. All averages in me 

Three cross magnitudes known 

<~ql> 1~'41mo~o 
CN gt 4 AV1 AV2 CN gt 4 AV1 AV2 CN ~4 

168 32 45 168 78 78 358 
260 36 51 278 85 85 611 
497 40 60 503 99 99 1412 
825 46 77 825 108 131 2075 

C N ~ 4  AV1 AV2 CNgt4 AV1 AV2 C N ~ 4  
90 70 81 90 124 139 50 

265 55 7~ 265 115 128 203 
825 46 77 825 108 131 665 

2075 

Igt41range N ~ 4  M1 M2 Ngt4 M1 M2 N~4  
0-100 607 43 65 771 128 128 1159 

100-200 143 64 113 0 m __ 611 
200-300 51 34 120 0 - -  - -  247 
300-400 24 34 83 0 m - -  58 
400-500 0 ~ ~ 54 -176 176 0 

Two cross magnitudes known 

(1~41> I ~41mode 
AV1 AV2 CN gt 4 AV1 
29 46 362 79 
33 52 602 89 
37 68 1336 111 
29 79 2075 111 

AVl AV2 CNgt4 AV1 
30 55 50 88 
31 65 203 99 
.35 75 665 111 
29 79 2075 111 

M I  M2 N ~ 4  M I  
38 63 1934 134 
22 92 0 

4 114 0 
14 96 0 
- -  - -  141 -201 

AV2 
79 
89 

111 
138 

AV2 
98 

113 
129 
138 

M2 
134 

201 

values are listed. From the data obtained with the 
mean, it can be seen that for all five I ',1 estimated 
ranges the systematic errors are low. On the other 
hand, the data for the mode show large deviations. 
The I~',1 values predicted to be in the ranges 0-100 
and 100-200 mc have been estimated systematically 
too low, respectively 102 and 42 mc. However, those 
predicted to lie in the regions 300-400 and 400-500 me 
are estimated too high, respectively 41 and 107 mc. 
These results clearly illustrate the tendency of the 
mode to overestimate quartets to be either zero or 7r. 
These conclusions apply also to the quartets of which 
only two cross-term magnitudes have been measured, 
as can be inferred from the right half of Table 3. As 
mentioned before, the trends visible in Table 3 are 
representative for the other structures tested, so it can 
be concluded that for estimating 1~'41 using expression 
(32), the use of the mean yields better results than 
the mode. Moreover, since the means result in almost 
an absence of systematic errors, it can be concluded 
that the joint probability distribution (32) in its 
approximate form fits the true distribution of phase 
sums 1~41 almost completely. 

Estimating 1~41 using the distributions of Hauptman 
and Giacovazzo. Comparison with expression (32) 

The results for structure P1A25 obtained with the 
Hauptman expression (1.5)-(1.9) are listed in Table 
4. From these data it appears that employment of the 
mean leads to systematic errors: the 1 '41 value of 
quartets of  which two and three cross-term magni- 
tudes have been measured is estimated on the average 
46 and 37 me too high, respectively. The lower section 
of this table indicates that the estimates up to 300 mc 
are responsible for this result. In contrast, the use of 

the mode from the Hauptman distribution leads to 
overestimates of zero and 7r, although these errors 
cancel partly in the overall systematic averages. For 
example, Table 4 shows that from the 825 quartets 
with three measured cross-term magnitudes 511 have 
been estimated in the [~4] range 0-100me,  though 
the estimates are on the average 92 mc too low, while 
those estimated in the 1~'41 ranges 300-400 and 400- 
500 mc are on the average estimated 107 and 171 mc 
too high, respectively. Nevertheless, the overall sys- 
tematic error for these quartets employing the mode 
is considerably smaller: 30 me. The data for P1A25 
obtained with the distribution of Giacovazzo (I.10)- 
(I.11) can be found in Table 5. Since almost all 
estimates are too low in comparison with the real 
data, it can be concluded that the Giacovazzo 
expression shows a clear tendency to overestimate 
11/'41 to be zero. The only exceptions are the estimates 
of ~r obtained with the mode of this distribution, but 
these are systematically too high. 

Comparison of the results for all four structures 

Finally, in Table 6 a summary is given of the overall 
averages for the four structures tested. It can be 
concluded from these data that estimating [gt4I with 
the mean (1 gt4[) from (32) yields the best results. Most 
important is the enormous reduction of the systematic 
errors of the estimates. For example, compare for the 
807 quartets with three measured cross-term magni- 
tudes of the structure KANTER the systematic error 
of 1 me when employing the mean from (32), with 
the - 4 6  and +44 me obtained with the means from 
the Hauptman and Giacovazzo distributions respec- 
tively. The absolute estimation errors are also the 
lowest if the mean from (32) is used, e.g. compare 
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Table 6. Survey of overall 1~4[ estimates using expression (32) and the quartet expressions of Hauptman ( H) 
and Giacovazzo ( G) 

The overall systematic and absolute differences between the estimates and the true data, AV1 and AV2 respectively, are given in mc. 
Structures tested: P1A25, KANTER, P1A50 and P1A100 containing 25, 30, 50 and 100 equal atoms respectively. 

P1A25 KANTER P1A50 P1 A100 
150 200 200 250 

0.5 0.7 0.4 0.1 

Number of  strongest reflections used for generating 
quartets with lower limit E 4 

Number of Number of 
Structure quartets cross terms 

P1A25 825 3 
AVI AV2 AVI AV2 Distribution 

2 71 78 104 (32) 
-46 83 30 103 H(I.5) 

46 77 108 121 G(I.10) 
2 -5 78 89 120 (32) 

-37 87 69 124 H(I.9) 
29 79 111 138 G(I.11) 

3 1 52 74 80 (32) 
-46 66 53 74 H(I.5) 

44 57 86 87 G(I.IO) 
2 -6 54 78 86 (32) 

-38 64 73 87 H(I.9) 
36 57 90 94 G(I.II) 

3 -1 82 69 115 (32) 
-32 89 33 120 H(I.5) 

46 86 119 152 G(I.10) 
2 -2 89 101 138 (32) 

-22 93 78 139 H(I.9) 
34 89 119 156 G(I.11) 

3 -4  107 106 177 (32) 
-16 109 80 178 H(I.5) 

19 107 123 195 G(I.10) 
2 -1 109 124 187 (32) 

-9 110 112 186 H(I.9) 
16 108 129 194 G(I.11) 

2075 

KANTER 807 

1353 

P1A50 1267 

1417 

P1A100 898 

1592 

for the same 807 quartets the absolute error of 52 mc 
for (32) with the 66 and 57 mc respectively for the 
Hauptman and Giacovazzo expressions. Going from 
the data of P1A25 to P1A100, i.e. to larger structures, 
it can be seen that the overall differences between the 
results of the three expressions decrease, although 
even for the 100-atom structure P1A100 they are 
significantly present. 

In conclusion, it has been shown in this paper that 
the incorporation of a selection of higher-order terms 
up to and including O ( N  -3)  t e r m s  in a new joint 
probability distribution of seven normalized structure 
factors, expressed as a series expansion, yields an 
improvement of the estimation of 1~41. In particular 
the systematic differences between the real and esti- 
mated 1~41's are reduced considerably when com- 
pared with the results from the quartet expressions 
of Hauptman (1975b) and Giacovazzo (1976a). The 
absolute estimation errors are also lower for the new 
distribution although this reduction is smaller. In 
particular, the low systematic errors show that, 
although not all terms up t o  O ( N  -3)  have been 
included due to the approximation (I.3) employed, 
the approximation discussed leads to results which 

seem to be hardly improvable by including all terms 
up t o  O ( N - 3 ) .  
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